Inferring Implicit Causal Relationships in Biomedical Literature

نویسنده

  • Halil Kilicoglu
چکیده

Biomedical relations are often expressed between entities occurring within the same sentence through syntactic means. However, a significant portion of such relations (in particular, causal relations) are expressed implicitly across sentence boundaries. Inferring these discourse-level relations can be challenging in the absence of syntactic clues. In this paper, we present a study of textual characteristics that contribute to expression of implicit causal relations across sentence boundaries. Focusing on a chemical-disease relationship corpus, we identify and investigate the contribution of various features that can assist in identifying such inter-sentential relations. Using these features for supervised learning, we were able to improve previously reported best results by more than 13%. Our results demonstrate the usefulness of the proposed features and the importance of using a balanced dataset for this task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflective Random Indexing and indirect inference: A scalable method for discovery of implicit connections

The discovery of implicit connections between terms that do not occur together in any scientific document underlies the model of literature-based knowledge discovery first proposed by Swanson. Corpus-derived statistical models of semantic distance such as Latent Semantic Analysis (LSA) have been evaluated previously as methods for the discovery of such implicit connections. However, LSA in part...

متن کامل

SalaboMiner - A Biomedical Literature Mining Tool for Inferring the Genetics of Complex Diseases

We present SalamboMiner, a tool designed to discover relationships among genes, proteins and diseases from abstracts in the Pubmed database. SalamboMiner identifies relevant concepts included in biomedical articless in the Pubmed database. SalamboMiner identifies relevant concepts included in biomedical articles by means of Biological Entities Recognition. The co-citation of these concepts give...

متن کامل

Running head: INFERRING CAUSAL VARIABLES FROM CONTINUOUS ACTION SEQUENCES 1 Inferring action structure and causal relationships in continuous sequences of human action

In the real world, causal variables do not come pre-identified or occur in isolation, but instead are embedded within a continuous temporal stream of events. A challenge faced by both human learners and machine learning algorithms is identifying subsequences that correspond to the appropriate variables for causal inference. A specific instance of this problem is action segmentation: dividing a ...

متن کامل

Text Mining for Discovering Implicit Relationships in Biomedical Literature

..................................................................................................................................................... VII Povzetek ....................................................................................................................................................... IX Abbreviations ....................................................................

متن کامل

Kernel-based Gene Regulatory Network Inference

We propose a kernel-based method for inferring regulatory networks from gene expression data that exploits several important factors previously neglected in the literature, including expression clustering, nonlinear regulator-gene relationships, variable time lags and gene competition. In particular, our approach infers regulatory relationships by encouraging genes with similar expression patte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016